PARAMETER
|
TYPICAL ELECTRICAL CHARACTERISTICS |
|||||||||
|
AT STANDARD TEST CONDITIONS(STC) |
STC:AM=1.5,irradiance1000W/m²,Component temperature25ºC |
||||||||
|
Typical Type |
Unit |
JY1-54H380PC |
JY1-54H385PC |
JY1-54H390PC |
JY1-54H395PC |
JY1-54H400PC |
JY1-54H405PC |
JY1-54H410PC |
|
|
Max-Power(Pm) |
W |
380 |
385 |
390 |
395 |
400 |
405 |
410 |
|
|
Power Tolerance |
W |
|
|
|
0~+5W |
|
|
|
|
|
Max-Operating Voltage(Vm) |
V |
30.23 |
30.38 |
30.54 |
30.69 |
30.85 |
31.02 |
31.18 |
|
|
Max-Operating Current(Im) |
A |
12.59 |
12.69 |
12.79 |
12.89 |
12.99 |
13.08 |
13.17 |
|
|
OpenCircuitVoltage(Voc) |
V |
36.00 |
36.20 |
36.40 |
36.60 |
36.80 |
37.00 |
37.20 |
|
|
Short Circuit Current(isc) |
A |
13.42 |
13.49 |
13.56 |
13.63 |
13.70 |
13.76 |
13.82 |
|
|
Module Efficiency(nm) |
% |
19.2 |
19.5 |
19.7 |
20.0 |
20.2 |
20.5 |
20.7 |
|
|
ELECTRICAL CHARACTERISTICS AT NOMINAL MODULE |
NMOT:irradiance 800W/m,ambient temperature20ºC,wind speed1m/s |
||||||||
|
Typical Type |
Unit |
JY1-54H380PC |
JY1-54H385PC |
JY1-54H390PC |
JY1-54H395PC |
JY1-54H400PC |
JY1-54H405PC |
JY1-54H410PC |
|
|
Max-Power(Pm) |
W |
286 |
290 |
294 |
298 |
302 |
306 |
310 |
|
|
Max-Operating Voltage(Vm) |
V |
28.09 |
28.24 |
28.42 |
28.55 |
28.70 |
28.85 |
29.00 |
|
|
Max-Operating Current(m) |
A |
10.21 |
10.30 |
10.39 |
10.47 |
10.55 |
10.62 |
10.71 |
|
|
Open-Circuitvoltage(Voc) |
V |
33.80 |
34.00 |
34.20 |
34.40 |
34.60 |
34.80 |
35.00 |
|
|
Short-circuit current (Isc) |
A |
10.70 |
10.77 |
10.85 |
10.90 |
10.96 |
11.01 |
11.08 |
|
ADVANTAGE
Traditional modules cannot meet the needs of modern photovoltaic integrated buildings in terms of lightweight, flexibility, functional integration, and overall performance.
·Limited Load heavyweight, bracket installation, high roof load requirements
·Safety Risk risk of self-explosion (3‰ )
·Additional costs steel structure/bracket costs, labor costs due to complex construction
·Insufficient Shock Resistance the glass module is fragile and has poor shock resistance
·Aesthetic Shortcomings single color, single shape, poor adaptability
·LIGHTEROnly 30% of the weight of traditional modules, solving the problem of insufficient load on existing roofs
·MORE FLEXIBLEIt can be better integrated into architectural design, provide more diverse appearance and integration solutions, and adapt to different curved surfaces and shapes, so that photovoltaic systems can be perfectly integrated with buildings and reduce design restrictions.
·SHINING GREEN ENERGY WORLD Through the research and technological iteration of encapsulation materials, we have solved the insufficient light transmission and weather resistance of other ordinary lightweight modules and achieved higher and more stable power generation efficiency.
Flexible solar panels differ quite from rigid, rectangular, glass-encased standard solar panels typically found on rooftops. Rather, flexible solar panels come in all shapes and sizes and are expected to be used in a greater number of situations than standard panels Whereas portable solar panels contain solar cells mounted in a lightweight, often plastic frame and thin-film panels are made of materials like copper, selenium, and gallium, flexible and standard solar panels use solar wafers to convert sunlight to electricity. Most often, flexible panels use wafers made from silicon, though they are far thinner than those in standard panels-as thin as merely a few micrometers in width. Whereas standard panels are sandwiched between layers of glass, flexible panels are placed between layers of protective plastic.
Flexible solar panels differ quite from rigid, rectangular, glass-encased standard solar panels typically found on rooftops. Rather, flexible solar panels come in all shapes and sizes and are expected to be used in a greater number of situations than standard panels Whereas portable solar panels contain solar cells mounted in a lightweight, often plastic frame and thin-film panels are made of materials like copper, selenium, and gallium, flexible and standard solar panels use solar wafers to convert sunlight to electricity. Most often, flexible panels use wafers made from silicon, though they are far thinner than those in standard panels-as thin as merely a few micrometers in width. Whereas standard panels are sandwiched between layers of glass, flexible panels are placed between layers of protective plastic.
1. Intelligent management system and multiple working modes, meeting different customer needs 2. Allowing you to set the priority of grid connection, battery type and other inverter information on the LCD screen. 3. Dual MPPT, high current input, compatible with large solar cell module of 210mm, flexible configuration, 4. All-in-one design, providing backup power and peak-shaving function. 5. With a battery safety management system, supporting the remote upgrade of BMS system.
1. Supports lead acid battery and li-ion battery connections. 2. With a dual activation function when the li-ion battery is dormant; either mains/photovoltaic power supply access can trigger the activation of the li-ion battery. 3. Support split-phase and single-phase pure sine wave output. 4. Supports four different voltage levels of 100Vac, 105Vac, 110Vac, and 120Vac per phase. 5. Supports two solar inputs and simultaneous tracking of two solar maximum power charging/carrying capacity functions. 6. Dual MPPT with 99.9% efficiency and maximum 22A current in a single circuit, perfectly adapted to high power modules.
The charger is an AC to DC charging module. It has the advantages of wide constant power voltage range, high efficiency, high power factor, high power density, minimal electromagnetic radiation and interference, and high reliability to meet the fast charging needs of various batteries. ,Energy saving and environmental protection.
ENERGY EFFICIENT COOLING & HEATING SYSTEM - This split inverter system offers efficient cooling and heating capabilities, with DC Inverter technology provides up to 71% energy saving on the ECO mode. SMART AND ALWAYS GETTING SMARTER - Wifi enable mini split system work remote control, You can control your mini split air conditioner from anywhere while you're away to save energy and feel cooler when you get home. QUIET OPERATION - This highly-efficient mini split inverter system warrants ultra-low noise, the indoor unit operates as quiet as 19 dBa. The mini split provides balanced airflow to throughout your room and can adjust to suit your personal comfort.
The solar photovoltaic power system connected to the public grid is called on-grid photovoltaic power generation system. The system structure includes solar panel arrays, DC/DC converters, DC/AC inverters, AC loads, transformers, and other components. Inverter power: 20kW AC output voltage: three phase Solar panel type: mono or poly
This is a multifunctional inverter,combining functions of inverter, solar charger and battery charger to offer uninterruptible power support with portable size. Its comprehensive LCD display offers user configurable and easy accessible button operation such as battery charging, AC/solar charging, and acceptable input voltage based on different applications.

IPv6 network supported










