PARAMETER
TYPICAL ELECTRICAL CHARACTERISTICS
TYPICAL ELECTRICAL CHARACTERISTICS
AT STANDARD TEST CONDITIONS(STC)
STC:AM=1.5,irradiance1000W/m²,Component temperature25℃
AT STANDARD TEST CONDITIONS(STC)
STC:AM=1.5,irradiance1000W/m²,Component temperature25℃
Typical Type
Unit
JY1-72H505PC
JY1-72H510PC
JY1-72H515PC
JY1-72H520PC
JY1-72H525PC
JY1-72H530PC
JY1-t72H535PC
Typical Type
Unit
JY1-72H505PC
JY1-72H510PC
JY1-72H515PC
JY1-72H520PC
JY1-72H525PC
JY1-72H530PC
JY1-t72H535PC
Max-Power(Pm)
W
505
510
515
520
525
530
535
Max-Power(Pm)
W
505
510
515
520
525
530
535
Power Tolerance
W
0~+5W
Power Tolerance
W
0~+5W
Max-Operating Voltage(Vm)
39.80
39.95
40.10
40.24
40.40
40.55
40.70
Max-Operating Voltage(Vm)
39.80
39.95
40.10
40.24
40.40
40.55
40.70
Max-OperatingCurrent(m)
A
12.70
12.78
12.86
12.94
13.01
13.09
13.16
Max-OperatingCurrent(m)
A
12.70
12.78
12.86
12.94
13.01
13.09
13.16
OpenCircuitVoltage(Voc)
V
47.50
47.70
47.90
48.10
48.30
48.50
48.70
OpenCircuitVoltage(Voc)
V
47.50
47.70
47.90
48.10
48.30
48.50
48.70
Short Circuit Current(isc)
A
13.47
13.52
13.57
13.62
13.67
13.72
13.77
Short Circuit Current(isc)
A
13.47
13.52
13.57
13.62
13.67
13.72
13.77
Module Efficiency(nm)
%
19.0
19.2
19.3
19.5
19.7
19.9
20.1
Module Efficiency(nm)
%
19.0
19.2
19.3
19.5
19.7
19.9
20.1
ELECTRICAL
CHARACTERISTICS AT NOMINAL MODULE
ELECTRICAL
CHARACTERISTICS AT NOMINAL MODULE
OPERATING
TEMPERATURE(NMOT)
NMOT:irradiance 800W/m²,ambienttemperature20℃,wind speed¹m/s
OPERATING
TEMPERATURE(NMOT)
NMOT:irradiance 800W/m²,ambienttemperature20℃,wind speed¹m/s
Typical Type
Unit
JY1-72H505PC
JY1-72H510PC
JY1-72H515PC
JY1-72H520PC
JY1-72H525PC
JY1-72H530PC
JY1-t72H535PC
Typical Type
Unit
JY1-72H505PC
JY1-72H510PC
JY1-72H515PC
JY1-72H520PC
JY1-72H525PC
JY1-72H530PC
JY1-t72H535PC
Max-Power(Pm)
W
381
385
389
393
397
401
405
Max-Power(Pm)
W
381
385
389
393
397
401
405
Max-Perating Voltage(Vm)
V
36.98
37.13
37.27
37.43
37.56
37.71
37.86
Max-Perating Voltage(Vm)
V
36.98
37.13
37.27
37.43
37.56
37.71
37.86
Max-OperatingCurrent(Im)
A
10.31
10.38
10.45
10.51
10.58
10.63
10.70
Max-OperatingCurrent(Im)
A
10.31
10.38
10.45
10.51
10.58
10.63
10.70
Open-Circuitvoltage(Voc)
V
44.70
44.90
45.10
45.30
45.50
45.70
45.90
Open-Circuitvoltage(Voc)
V
44.70
44.90
45.10
45.30
45.50
45.70
45.90
ADVANTAGE
Traditional modules cannot meet the needs of modern photovoltaic integrated buildings in terms of lightweight, flexibility, functional integration, and overall performance.
·Limited Load heavyweight, bracket installation, high roof load requirements
·Safety Risk risk of self-explosion (3‰ )
·Additional costs steel structure/bracket costs, labor costs due to complex construction
·Insufficient Shock Resistance the glass module is fragile and has poor shock resistance
·Aesthetic Shortcomings single color, single shape, poor adaptability
·LIGHTEROnly 30% of the weight of traditional modules, solving the problem of insufficient load on existing roofs
·MORE FLEXIBLEIt can be better integrated into architectural design, provide more diverse appearance and integration solutions, and adapt to different curved surfaces and shapes, so that photovoltaic systems can be perfectly integrated with buildings and reduce design restrictions.
·SHINING GREEN ENERGY WORLD Through the research and technological iteration of encapsulation materials, we have solved the insufficient light transmission and weather resistance of other ordinary lightweight modules and achieved higher and more stable power generation efficiency.
Flexible solar panels differ quite from rigid, rectangular, glass-encased standard solar panels typically found on rooftops. Rather, flexible solar panels come in all shapes and sizes and are expected to be used in a greater number of situations than standard panels Whereas portable solar panels contain solar cells mounted in a lightweight, often plastic frame and thin-film panels are made of materials like copper, selenium, and gallium, flexible and standard solar panels use solar wafers to convert sunlight to electricity. Most often, flexible panels use wafers made from silicon, though they are far thinner than those in standard panels-as thin as merely a few micrometers in width. Whereas standard panels are sandwiched between layers of glass, flexible panels are placed between layers of protective plastic.
Flexible solar panels differ quite from rigid, rectangular, glass-encased standard solar panels typically found on rooftops. Rather, flexible solar panels come in all shapes and sizes and are expected to be used in a greater number of situations than standard panels Whereas portable solar panels contain solar cells mounted in a lightweight, often plastic frame and thin-film panels are made of materials like copper, selenium, and gallium, flexible and standard solar panels use solar wafers to convert sunlight to electricity. Most often, flexible panels use wafers made from silicon, though they are far thinner than those in standard panels-as thin as merely a few micrometers in width. Whereas standard panels are sandwiched between layers of glass, flexible panels are placed between layers of protective plastic.
The off grid solar inverter can be put outside and work without battery. Both solar panel and grid are connected to the inverter, solar is priority, grid will be backup. It is very suitable for such situation: loads work at daytime, with grid connection. Electricity bill can be saved a lot. The inverter power range can be 5kw to 500kw.
Such hybrid solar system can work as both solar on grid system and solar off grid system. It can utilize electricity price difference, charge battery at low price and discharge at high price to maximize system profit, compensate local transformer limit. It can provide back-up power supply for unstable grid, during grid failure, seamless switches to off-grid mode within 20ms to realize uninterruptable supply
The solar hybrid AC/DC air conditioner can work without battery, it works with unstable solar panel DC power at day time. At night or rainy days it automatically get grid AC power. It's mainly used for school classroom, hospital, restaurant, shops, office… With APP monitor and control function through WIFI
1. Intelligent management system and multiple working modes, meeting different customer needs 2. Allowing you to set the priority of grid connection, battery type and other inverter information on the LCD screen. 3. Dual MPPT, high current input, compatible with large solar cell module of 210mm, flexible configuration, 4. All-in-one design, providing backup power and peak-shaving function. 5. With a battery safety management system, supporting the remote upgrade of BMS system.
Off-grid or hybrid optional 6KW inverter, Max 3pcs in parallel Grade A battery cells, up to 6000+ cycles 5.5KWh battery, Max 12pcs in parallel Easy to install, combined freely BMS & battery capacity auto-sense WiFi/GPRS remote monitoring (optional)
The solar energy storage inverter can be used for both on grid and off grid solar systems, it integrates controller and inverter. During the daytime, the PV array generates electricity to provide power either to the loads, or to the grid or charge the battery. The battery can be charged either by PV power or by grid, the power stored in the battery can be released whenever the loads require it. Moreover ,the inverter can give three phase unbalanced output accroding to set up, to make a most flexible power solution.