PARAMETER
TYPICAL ELECTRICAL CHARACTERISTICS
TYPICAL ELECTRICAL CHARACTERISTICS
AT STANDARD TEST CONDITIONS(STC)
STC:AM=1.5,irradiance1000W/m²,Component temperature25℃
AT STANDARD TEST CONDITIONS(STC)
STC:AM=1.5,irradiance1000W/m²,Component temperature25℃
Typical Type
Unit
JY1-72H505PC
JY1-72H510PC
JY1-72H515PC
JY1-72H520PC
JY1-72H525PC
JY1-72H530PC
JY1-t72H535PC
Typical Type
Unit
JY1-72H505PC
JY1-72H510PC
JY1-72H515PC
JY1-72H520PC
JY1-72H525PC
JY1-72H530PC
JY1-t72H535PC
Max-Power(Pm)
W
505
510
515
520
525
530
535
Max-Power(Pm)
W
505
510
515
520
525
530
535
Power Tolerance
W
0~+5W
Power Tolerance
W
0~+5W
Max-Operating Voltage(Vm)
39.80
39.95
40.10
40.24
40.40
40.55
40.70
Max-Operating Voltage(Vm)
39.80
39.95
40.10
40.24
40.40
40.55
40.70
Max-OperatingCurrent(m)
A
12.70
12.78
12.86
12.94
13.01
13.09
13.16
Max-OperatingCurrent(m)
A
12.70
12.78
12.86
12.94
13.01
13.09
13.16
OpenCircuitVoltage(Voc)
V
47.50
47.70
47.90
48.10
48.30
48.50
48.70
OpenCircuitVoltage(Voc)
V
47.50
47.70
47.90
48.10
48.30
48.50
48.70
Short Circuit Current(isc)
A
13.47
13.52
13.57
13.62
13.67
13.72
13.77
Short Circuit Current(isc)
A
13.47
13.52
13.57
13.62
13.67
13.72
13.77
Module Efficiency(nm)
%
19.0
19.2
19.3
19.5
19.7
19.9
20.1
Module Efficiency(nm)
%
19.0
19.2
19.3
19.5
19.7
19.9
20.1
ELECTRICAL
CHARACTERISTICS AT NOMINAL MODULE
ELECTRICAL
CHARACTERISTICS AT NOMINAL MODULE
OPERATING
TEMPERATURE(NMOT)
NMOT:irradiance 800W/m²,ambienttemperature20℃,wind speed¹m/s
OPERATING
TEMPERATURE(NMOT)
NMOT:irradiance 800W/m²,ambienttemperature20℃,wind speed¹m/s
Typical Type
Unit
JY1-72H505PC
JY1-72H510PC
JY1-72H515PC
JY1-72H520PC
JY1-72H525PC
JY1-72H530PC
JY1-t72H535PC
Typical Type
Unit
JY1-72H505PC
JY1-72H510PC
JY1-72H515PC
JY1-72H520PC
JY1-72H525PC
JY1-72H530PC
JY1-t72H535PC
Max-Power(Pm)
W
381
385
389
393
397
401
405
Max-Power(Pm)
W
381
385
389
393
397
401
405
Max-Perating Voltage(Vm)
V
36.98
37.13
37.27
37.43
37.56
37.71
37.86
Max-Perating Voltage(Vm)
V
36.98
37.13
37.27
37.43
37.56
37.71
37.86
Max-OperatingCurrent(Im)
A
10.31
10.38
10.45
10.51
10.58
10.63
10.70
Max-OperatingCurrent(Im)
A
10.31
10.38
10.45
10.51
10.58
10.63
10.70
Open-Circuitvoltage(Voc)
V
44.70
44.90
45.10
45.30
45.50
45.70
45.90
Open-Circuitvoltage(Voc)
V
44.70
44.90
45.10
45.30
45.50
45.70
45.90
ADVANTAGE
Traditional modules cannot meet the needs of modern photovoltaic integrated buildings in terms of lightweight, flexibility, functional integration, and overall performance.
·Limited Load heavyweight, bracket installation, high roof load requirements
·Safety Risk risk of self-explosion (3‰ )
·Additional costs steel structure/bracket costs, labor costs due to complex construction
·Insufficient Shock Resistance the glass module is fragile and has poor shock resistance
·Aesthetic Shortcomings single color, single shape, poor adaptability
·LIGHTEROnly 30% of the weight of traditional modules, solving the problem of insufficient load on existing roofs
·MORE FLEXIBLEIt can be better integrated into architectural design, provide more diverse appearance and integration solutions, and adapt to different curved surfaces and shapes, so that photovoltaic systems can be perfectly integrated with buildings and reduce design restrictions.
·SHINING GREEN ENERGY WORLD Through the research and technological iteration of encapsulation materials, we have solved the insufficient light transmission and weather resistance of other ordinary lightweight modules and achieved higher and more stable power generation efficiency.
Flexible solar panels differ quite from rigid, rectangular, glass-encased standard solar panels typically found on rooftops. Rather, flexible solar panels come in all shapes and sizes and are expected to be used in a greater number of situations than standard panels Whereas portable solar panels contain solar cells mounted in a lightweight, often plastic frame and thin-film panels are made of materials like copper, selenium, and gallium, flexible and standard solar panels use solar wafers to convert sunlight to electricity. Most often, flexible panels use wafers made from silicon, though they are far thinner than those in standard panels-as thin as merely a few micrometers in width. Whereas standard panels are sandwiched between layers of glass, flexible panels are placed between layers of protective plastic.
Flexible solar panels differ quite from rigid, rectangular, glass-encased standard solar panels typically found on rooftops. Rather, flexible solar panels come in all shapes and sizes and are expected to be used in a greater number of situations than standard panels Whereas portable solar panels contain solar cells mounted in a lightweight, often plastic frame and thin-film panels are made of materials like copper, selenium, and gallium, flexible and standard solar panels use solar wafers to convert sunlight to electricity. Most often, flexible panels use wafers made from silicon, though they are far thinner than those in standard panels-as thin as merely a few micrometers in width. Whereas standard panels are sandwiched between layers of glass, flexible panels are placed between layers of protective plastic.
The on grid solar power system converts the solar energy into electrical energy, without the storage battery, and directly sends the electrical energy to the grid through the grid-connected inverter. Inverter power: 10kW AC output voltage: three phase Solar panel type: mono or poly
The 3kw off grid solar system is usually for home use where there is no grid or grid is unstable. It can supply power to normal home loads such as washing machine, LED lights, fan, air conditioner. Inverter power: 3kW AC output voltage: AC110V/120V Battery voltage: DC24V or DC48V Battery type: Gel battery or LiFePO4 battery Solar panel type: Mono or poly Compatible with grid and generator Monitor: WIFI or GPRS
What is off grid system? Off-grid solar energy systems are also called stand-alone solar systems. It does not connect with Grid or called Utility. It is very popular and suitable for remote areas where there is no public power or Public power is instable.It can be for Home applications, Commercial applications and Industrial applications. The off-grid solar energy system can be 1kW/2kW/3kW/5kW/10kW/12kW/16kW/20kW/24kW/30kW/50kW/80kW/100kW/120kW/ 150kW/200kW/Customized off-gid power system Off-grid system is suitable for areas without grid-connected or unstable grid-connected power. Off grid system is usually composed of solar panels, connector, inverter, batteries and mounting system. Description of 15kW solar panel system: Inverter power: 15kW AC output voltage: AC110V/120V Battery voltage: DC24V or DC48V Battery type: Gel battery or LiFePO4 battery Solar panel type: Mono or poly Compatible with grid and generator Monitor: WIFI or GPRS
Off-grid or hybrid optional 6KW inverter, Max 3pcs in parallel Grade A battery cells, up to 6000+ cycles 5.5KWh battery, Max 12pcs in parallel Easy to install, combined freely BMS & battery capacity auto-sense WiFi/GPRS remote monitoring (optional)
Characters Transformerless with three level topology Max efficiency up to 98.6% Dual MPPT inputs accommodating wide voltage range Compact structure design Complete protection function such as anti-islanding, short circuit, overload Easy installation and free maintenance WiFi or GPRS (optional) communication
The 20kW off grid solar system is suitable for area without grid or grid is unstable. It can be compatible with generator to saving electricity bill and increase the power quality. Inverter power: 4pcs 5kw in parallel AC output voltage: AC220V/230V/240V or AC380V/400V/415V Battery voltage: DC48V Battery type: Gel battery or LiFePO4 battery Solar panel type: Mono or poly Compatible with grid and generator Monitor: WIFI or GPRS

IPv6 network supported










